Lecture 4: Interrupt

An operating system is a collection of service routines. The service routine can be executed by a request from an application (system call interrupt). Or it runs automatically when there is a serious error while running an application (exception interrupt) or when there is an external hardware event that the operating system has to handle (hardware interrupt). The service routines are called ISRs (Interrupt Service Routines).

	external event
	interrupt number
	ISR (ISR1 => ISR2)

	An application calls
read(...)
	int 128
(syscall num 3)
	system_call() => sys_read()

	An application calls
write(...)
	int 128
(syscall num 4)
	system_call() => sys_write()

	timer ticks
	int 32
	interrupt[0] => timer_interrupt()

	key stroke
	int 33
	interrupt[1] => atkbd_interrupt()

	An application runs
x=x/0;
	int 0
	divide_error() => do_divide_error()

	page fault while an application run
	int 14
	page_fault() => do_page_fault()

ISR1s are all located in arch/x86/kernel/entry_32.S. ISR2s are located in various locations of the kernel.

When an interrupt, INT x, happens, the cpu stores the current cs, eip, flag register into stack and jumps to ISR1 for INT x. The ISR1 locations are written in IDT (Interrupt Descriptor Table), and the cpu jumpts to the location written in IDT[x]. ISR1 knows the location of ISR2. It knows the location of ISR2 because it is hard-coded (exception interrupt case), or is written in irq_desc table (hardware interrupt case) or is written in syscall_table (system call interrupt case).

1. Interrupt classification and Interrupt number
There are two kinds of interrupt: software interrupt and hardware interrupt. Software interrupt is generated by a program when it makes a serious error (e.g. dividing by zero) or runs a special instruction (e.g. INT, SYSENTER, SYSCALL). The former is called exception and the latter system call. Hardware interrupt is generated by peripheral devices connected to CPU. Key press is one example of hardware interrupt. All interrupts have a unique number defined by the operating system. Operating system is a collection of routines that handle interrupts.

Hardware interrupts have been assigned following interrupt numbers in Linux.

	device
	interrupt number
	irq number

	timer
	32
	0

	keyboard
	33
	1

	PIC cascading
	34
	2

	second serial port
	35
	3

	first serial port
	36
	4

	floppy disk
	38
	6

	system clock
	40
	8

	network interface
	42
	10

	usb port, sound card
	43
	11

	ps/2 mouse
	44
	12

	math coprocessor
	45
	13

	eide disk, first chain
	46
	14

	eide disk, second chain
	47
	15

Exceptions have been assigned following interrupt numbers.

	exception
	interrupt number

	divide-by-zero error
	0

	debug
	1

	NMI
	2

	breakpoint
	3

	overflow
	4

	bounds check
	5

	invalid opcode
	6

	device not available
	7

	double fault
	8

	coprocessor segment overrun
	9

	invalid TSS
	10

	segment not present
	11

	stack segment fault
	12

	general protection
	13

	page fault
	14

	intel-reserved
	15

	floating point error
	16

	alignment check
	17

	machine check
	18

	simd floating point
	19

Finally, system calls in Linux are all assigned the same interrupt number, 128 (0x80). To differentiate between different system calls, a unique system call number has been given to each system call. For the full table, look at arch/x86/kernel/syscall_table_32.S.

	system calls
	interrupt number
	system call number

	exit
	128
	1

	fork
	128
	2

	read
	128
	3

	write
	128
	4

	open
	128
	5

	close
	128
	6

2. How interrupts are detected?

Interrupts are detected by CPU. Exceptions are detected when the corresponding error happens. System calls are detected when the program executes INT 128 instruction. Hardware interrupts are detected when the corresponding devices are affected. Hardware interrupts need more detailed explanation.

The above picture shows how hardware interrupts are detected by the CPU. All hardware devices are connected to 8259A interrupt controller through IRQ lines. Timer is connected through IRQ0 line, keyboard is connected through IRQ1 line, and so on. When an event happens in one of these devices, the corresponding IRQ line is activated, and 8259A signals CPU about this event along with the corresponding interrupt number for this IRQ line. The interrupt number is computed as (IRQ line number + 32) in Linux.

3. How interrupts are handled

Interrupts are first handled by the CPU, and then the operating system takes care of the rest of things.

3.1 cpu part

When an interrupt happens, the CPU executes the corresponding INT instruction. For example, if the user presses a key (which corresponds to INT 33), the CPU executes INT 33. Executing “INT x” instruction is two steps:
 - save current EFLAG, CS,EIP registers in the stack
 - jump to the location specified in IDT[x]
IDT(Interrupt Descriptor Table) is a table containing the address of ISR’s(Interrupt Service Routines). More general name for IDT is Interrupt Vector Table. If IDT[32] indicates address 0x10200, the ISR for timer interrupt is located at address 0x10200, which means whenever the timer ticks, the cpu jumps to address 0x10200. If IDT[33] indicates address 0x10300, the ISR for keyboard is located at 0x10300. Whenever the user hits some key, the cpu will jump to 0x10300 and start to execute whatever program stored there.
 It is the responsibility of the operating system to provide the IDT and fill in proper address for each interrupt. Linux writes IDT in arch/x86/kernel/traps_32.c/trap_init() (for exception interrupts and system call interrupt) and in arch/x86/kernel/i8259_32.c/init_IRQ() (for hardware interrupts). Also the cpu knows the location of IDT by its IDTR register. Therefore, it is again the responsibility of operating system to write the location of the IDT in IDTR register. Each entry in IDT is 8 byte. The variable name of IDT table in Linux is idt_table.

3.2 OS part

Once the cpu jumps to the corresponding ISR, OS takes the control since ISR belongs to the operating system. All ISR’s (I call ISR1) consist of three steps:
 - save the rest of registers (eflag, cs, eip are already saved by cpu)
 - call actual interrupt handler (I call ISR2)
 - recover the saved registers and go back to the interrupted location
Linux writes ISR1's in IDT by calling set_intr_gate() for hardware interrupts in arch/x86/kernel/i8259_32.c/native_init_IRQ(), and by calling set_trap_gate() for most of the exceptions and set_system_gate() for system call interrupts in arch/x86/kernel/traps_32.c/trap_init(). Device drivers write their ISR2's for hardware interrupts in irq_desc[] table by calling request_irq(). ISR2's for exceptions are directly called in the corresponding ISR1's, the name always being do_(ISR1 name). ISR2's for the system calls are hard-coded in sys_call_table[] in arch/x86/kernel/syscall_table_32.S. ISR1s are defined in arch/x86/kernel/entry_32.S, and ISR2s are defined in various places.

Interrupt numbers and their ISR1 and ISR2 list.

	interrupt number
	ISR1
	ISR2

	0
	divide_error
	do_divide_error

	1
	debug
	do_debug

	
	

	32
	interrupt[0]
	timer_interrupt

	33
	interrupt[1]
	atkbd_interrupt

	
	

	128 (syscall num 1)
	system_call
	sys_exit

	128 (syscall num 2)
	system_call
	sys_fork

	
	

4. Homework

1) Following events will cause interrupts in the system. What interrupt number will be assigned to each event? For system call interrupt, also give the system call number.
 - A packet has arrived
 - An application program calls scanf()
 - A key is pressed
 - An application causes a divide-by-zero error
 - An application program calls printf()
 - An application causes a page-fault error

2) Change drivers/input/keyboard/atkbd.c as follows.
static irqreturn_t atkbd_interrupt(....){
 return IRQ_HANDLED; // Add this at the first line

}

Recompile the kernel and reboot with it. What happens and why does this happen? Show the sequence of events that happen when you hit a key in a normal Linux kernel (as detail as possible): hit a key => keyboard controller sends a signal through IRQ line 1 =>etc. Now with the changed Linux kernel show which step in this sequence has been modified and prevents the kernel to display the pressed key in the monitor.

3) Change the kernel such that it prints "x pressed" for each key pressing, where x is the scan code of the key. After you change the kernel and reboot it, do followings to see the effect of your changing.
 # echo 8 > /proc/sys/kernel/printk
/proc/sys/kernel/printk shows the console log level, default log level, min and max log level.
 # cat /proc/sys/kernel/printk
 1 4 1 7
The above means the console log level is 1, default printk log level is 4, and min conole log level is 1 and default console log level is 7. Lower log level means higher priority. Since default log level has lower priority than console log level, using printk() will not show the message on the console. We change the console log level to lowest level so that printk() will be able to display message on the console.
echo 8 > /proc/sys/kernel/printk
Above will set console log level to 8 which means all printk() message will appear on the console from now on. (Note the files in /proc file system are not real files. They are generated dynamically when needed.)
4) Change the kernel such that it displays the next character in the keyboard scancode table. For example, when you type "root", the monitor would display "tppy". How can you log in as root with this kernel?
5) Define a function "mydelay" in init/main.c which whenever called will stop the booting process until you hit 's'. Call this function after do_basic_setup() function call in kernel_init() in order to make the kernel stop and wait for 's' during the booting process. You need to modify atkbd.c such that it changes exit_mydelay to 1 when the user presses 's'.

init/main.c
........
int exit_mydelay; // define a global variable
void mydelay(char *str){
 printk(str);
 printk("enter s to continue\n");
 exit_mydelay=0; // init to zero
 for(;;){ // and wait here until the user press 's'
 msleep(1); // sleep 1 micro-second so that keyboard interrupt ISR
 // can do its job
 if (exit_mydelay==1) break; // if the user press 's', break
 }
}
void kernel_init(){

 do_basic_setup();
 mydelay("after do basic setup in kernel_init\n"); // wait here

}

drivers/input/keyboard/atkbd.c
.........
extern int exit_mydelay; // declare as extern since it is defined in main.c
static irqreturn_t atkbd_interrupt(....){

 // detect 's' key pressed and change exit_mydelay

}
5-1) Add mydelay before do_basic_setup(). What happens and why?
void kernel_init(){

 mydelay("before do basic setup in kernel_init\n"); // wait here
 do_basic_setup();
 mydelay("after do basic setup in kernel_init\n"); // wait here

}

6) Which function call in atkbd_interrupt() actually displays the pressed key in the monitor?

6-1) What are the interrupt numbers for divide-by-zero exception, keyboard interrupt, and "read" system call? Where is ISR1 and ISR2 for each of them (write the exact code location)? Show their code, too.

7) sys_call_table[] is in arch/x86/kernel/syscall_table_32.S. How many system calls does Linux 2.6 support? What are the system call numbers for exit, fork, execve, wait4, read, write, and mkdir? Find system call numbers for sys_ni_syscall, which is defined at kernel/sys_ni.c. What is the role of sys_ni_syscall?
8) Change the kernel such that it prints "length 17 string found" for each printf(s) when the length of s is 17. Run a program that contains a printf() statement to see the effect. printf(s) calls write(1, s, strlen(s)) system call which in turn runs
 mov eax, 4 ; eax<--4. 4 is system call number for “write”
 int 128
INT 128 will make the cpu stop running current process and jump to the location written in IDT[128]. IDT[128] contains the address of system_call (located in arch/x86/kernel/entry_32.S). Finally, system_call will execute
 call *sys_call_table(,%eax,4)
which eventually calls sys_write() since eax=4 for write() system call (the target function location is sys_call_table+eax*4).
* Sometimes the the system call runs "sysenter" instead of "int 128". In this case the cpu jumps to ia32_sysenter_target (also in entry_32.S) instead of system_call.

9) You can call a system call indirectly with “syscall()”.
 write(1, “hi”, 2);
can be written as
 syscall(4, 1, “hi”, 2); // 4 is the system call number for “write” system call
Write a program that prints “hello” in the screen using syscall.
10) Create a new system call, my_sys_call with system call number 17 (system call number 17 is one that is not being used currently). Define my_sys_call() just before sys_write() in read_write.c. Write a program that uses this system call:
 void main(){
 syscall(17); // calls a system call with syscall number 17
 }
When the above program runs, the kernel should display
 hello from my_sys_call
To define a new system call with syscall number x
 - insert the new system call name in arch/x86/kernel/syscall_table_32.S
 at index x
 - define the function in appropriate file (such as "read_write.c")
 asmlinkage void my_sys_call(){
 printk("hello from my_sys_call\n");
 }
 - recompile and reboot
To use this system call in a user program
 - void main(){
 syscall(x);
 }
10-1) Create another system call that will add two numbers given by the user.
ex0.c:
 void main(){
 int sum;
 sum = syscall(31, 4, 9); // suppose 31 is an empty entry in sys_call_table
[bookmark: _GoBack] printf("sum is %d\n", sum);
 }
#./ex0
sum is 13

11) Modify the kernel such that it displays the system call number for all system calls. Run a simple program that displays "hello" in the screen and find out what system calls have been called. Also explain for each system call why that system call has been used.

12) What system calls are being called when you remove a file? Use "system()" function to run a Linux command as below. Explain what each system call is doing. You need to make f1 file before you run it. Also explain for each system call why that system call has been used.

 system("rm f1");

13) Find rm.c in busybox-1.31.1 and show the code that actually removes "f1". Note all linux commands are actually a program, and running "rm" command means running rm.c program. "rm" needs a system call defined in uClibc-0.9.33.2 to remove a file. You may want to continue the code tracing all the way up to "INT 0x80" in uClibc for this system call.
oleObject2.bin

image1.emf
CPU 8259A

8259A

INTA INT INT

irq2

irq0

irq7

irq8

irq15

......

.....

ACK

INT#

oleObject1.bin
�

CPU�

8259A�

8259A�

INTA�

INT�

INT�

�

irq0�

irq2�

irq7�

�

irq8�

irq15�

......�

.....�

�

ACK�

�

INT#�

image2.emf
keyboard press write(fd,...); x=x/0;

INT 128 INT 0 INT 33

idt_table[]

&system_call interrupt[0]

0

÷

_error

1 32 33 128

&debug

interrupt[1]

do_divide_error

&atkbd_interrupt

&timer_interrupt

&sys_write

irq_desc[] sys_call_table[]

