
Visual

C#.NET:

Console

Applications

and Windows

Forms
Visual Studio .NET is a Microsoft-integrated

development environment (IDE) that can be

used for developing consoles, graphical user

interfaces (GUIs) and Windows Forms. This

book explores the use of C# for creating a

variety of applications that run on the .NET

framework. The C# syntax is explored through

the use of several examples that allow the user

to create applications in console mode, interact

with objects in windows forms, establish

connection to a relational database and

explore the use of XML documents. Eight

scenarios for the adoption of this technology

are also exploited.

Fernando Almeida, PhD.

July, 2018

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 2

Table of Contents

Acronyms .. 4

Glossary ... 5

1. Introduction ... 6

1.1 Contextualization ... 6

1.2 Objectives .. 6

1.3 Book Structure ... 6

2. The basic of console applications .. 7

3. The basic of windows forms .. 11

4. C# syntax .. 15

4.1 Variables .. 15

4.2 Operators ... 17

4.3 if-else statement ... 19

4.4 Switch statement .. 20

4.5 For loop.. 20

4.6 While loop .. 21

4.7 Arrays .. 22

4.8 Arrays class ... 25

4.9 Functions ... 26

4.10 Class .. 28

4.11 Structs .. 31

4.12 Strings .. 33

4.13 Exceptions ... 35

4.14 Files ... 38

4.15 Collections ... 41

4.16 Databases .. 42

4.17 XML ... 44

5. Scenarios .. 48

5.1 Console Application: Price of products ... 48

5.2 Console Application: Prime numbers ... 48

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 3

5.3 Console Application: Sum of digits ... 49

5.4 Console Application: Sum elements of an array ... 50

5.5 Windows Forms: Dealing with boxes .. 50

5.6 Windows Forms: Working with Strings ... 52

5.7 Windows Forms: Interacting with databases .. 54

5.8 Windows Forms: Interacting with XML files .. 58

Bibliography .. 62

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 4

Acronyms

C# – C Sharp

GUI – Graphical User Interface

LINQ – Language Integrated

Query SQL – Structured Query

Language VAT - Value Added

Tax

XML – Extensible Markup Language

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 5

Glossary

Array – a data structure that contains a group of elements. Typically these elements

are all of the same data type, such as an integer or string. Arrays are commonly used

in computer programs to organize data so that a related set of values can be easily

sorted or searched.

Console – the combination of display monitor and keyboard (or other device that allows

input). Another term for console is terminal.

LINQ – component of Microsoft .NET that adds query functionality in some .NET

programming languages.

List – abstract data structure that implements an ordered collection of values, where

the same value can occur more than once.

Prime number – natural numbers that have only two different divisors: the 1 and itself.

Relational database – a collective set of multiple data sets organized into tables,

records and columns. RDBs establish a well-defined relationship between database

tables. Tables communicate and share information, which facilitates data searchability,

organization and reporting.

SQL Injection – SQL injection attacks are a type of injection attack, in which SQL

commands are injected into data-plane input in order to effect the execution of

predefined SQL commands.

SQL Server – a SQL-based relational database management system designed for use

in corporate applications, both on premises and in the cloud.

String – sequence of characters, generally used to represent words or phrases.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 6

1. Introduction

1.1 Contextualization

It is agreed that different programming languages are suitable for the development of

different applications. In fact, today, there is a range of languages suitable for the

development of each type of application, be it a scientific application, a web application,

an application for data management, etc. There is no single programming language

suitable for any application development. On the contrary, it is common for the

development of the same application to make use of different languages.

The evolution of programming languages leads to the emergence of new, more efficient

languages, giving programming new horizons in the face of constant demands on the

part of companies. Visual C#.NET is the programming language created by Microsoft

and specially designed for the development of applications on the .NET platform. This

language and its associated platform promise to radically change the way applications

are developed for Windows, and also for the Internet.

Visual C# brings some important benefits like:

 A simple but simultaneously robust object-oriented programming language;

 Component oriented;

 Interoperability, scalability and performance;

 Rich library, particularly for building graphical applications.

1.2 Objectives

Having as a philosophy the learning by doing, this book proposes a step-by-step
learning approach in which the concepts are accompanied by practical examples. It
intends to give to the reader a general perception and knowledge of each component of
Visual C#.NET and to solve practical exercises to consolidate the presented concepts.
Finally, it presents a set of mini projects developed in Visual C#.NET that can help the
reader to consolidate the addressed contents.

1.3 Book Structure

The book is organized in five chapters, respectively:

 Introduction – a brief contextualization of the book, objectives and its structure is given;

 The basic of console applications – provides a global overview about the process
of creating console applications using Visual Studio;

 The basic of windows forms – provides a global overview about the process of
creating windows forms applications using Visual Studio;

 C# syntax – gives a detailed overview about the syntax of C#. Several examples
are provided associated to each component and C# instruction;

 Scenarios – numerous scenarios of creating mini projects in Visual C# are given.
These scenarios target console applications and windows forms.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 7

2. The basic of console applications

Console Applications are traditional applications without graphical interface. This type

of application runs on command line with input and output information. Because

information is written to and read from the console window, this type of application

becomes a great way to learn programming techniques without having to worry about

developing a graphical interface. To create a new console application in Visual Studio

the following steps should be executed:

1. Start a new instance of Visual Studio;

2. On the menu bar, choose File -> New Project and then choose “Console

Application” (Figure 1);

Figure 1 – Choose a Console Application

3. The name of the project must be specified in the name box. It is also important to

select the folder in which the project will be saved;

4. The new created project appears in Solution Explorer. Associated to the project

we have the “program.cs” file in which the code of the program will be developed.

After followed these steps the developer can start to write the code as it is depicted in

Figure 2.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 8

using System;

namespace

HelloWorld

{

class Hello

{

static void Main()

{

Console.WriteLine("Hello World!");

// Keep the console window open in debug

mode. Console.WriteLine("Press any key to

exit."); Console.ReadKey();

}

}

}

Figure 2 – Writing code in “program.cs”

Perhaps the easiest program that we can develop is the classic “Hello World”.

It is relevant to emphasize that comments in Visual C# can be placed in the code

using two approaches:

 “//” – Inline comments;

 “/* and */” – comments among multiple

lines. Some examples are provided below.

// Line 1

// Line 2

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 9

class TestClass

{

static void Main(string[] args)

{

// Display the number of command line

arguments:

System.Console.WriteLine(args.Length);

}

}

using

System;

class

Program

{

static void Main(string[] args)

{

if (args == null)

{

Console.WriteLine("args is null");

}

else

{

Console.Write("args length is

");

Console.WriteLine(args.Leng

th);

A typical useful situation in a console environment application is to receive arguments

from the command line. This situation is depicted in the example below, where we

calculate the total number of arguments passed in the console.

Another more advanced example is given below. Args[] is considered an array of

strings. The fist thing to do is to check if the console received arguments. If it is

positive, therefore the args is different of null. In the console all arguments are written.

For that, a for loop is adopted for this purpose.

// Line 3

/*

First Line to Comment

Second Line to

Comment Third Line to

Comment

*/

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 10

for (int i = 0; i < args.Length; i++)

{

string argument = args[i];

Console.Write("args index ");

Console.Write(i); // Write index

Console.Write(" is [");

Console.Write(argument); // Write

string Console.WriteLine("]");

}

}

Console.ReadLine();

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 11

3. The basic of windows forms

Windows Forms uses a set of managed libraries in .NET framework to design and

develop graphical interface applications. It offers a graphical API to display data and

manage user interactions with easier deployment and better security in client

applications. It is built with event-driven architecture similar to Windows clients and

hence, its applications wait for user input for its execution.

Windows Forms offers a designer tool in Visual Studio to use and insert controls in a

form and range them as per desired layout, with provision for adding code to handle

their events, which implement user interactions. Every control in Windows Forms

application is a concrete instance of a class. The layout of a control in the Graphical

User Interface (GUI) and its behavior are managed using methods and proprieties.

Numerous controls are available such as text boxes, buttons, fonts, icons, combo

boxes, area elements, and other graphic objects.

Some best practices for building Windows Forms applications are recommended below

(Techopedia, 2017):

 Windows Forms classes can be extended, using inheritance, to design an

application framework that can provide high level of abstraction and code

reusability;

 Forms should be compact, with controls on it limited to a size that can offer

minimum functionality. Additionally, the creation and removal of controls

dynamically can reduce the number of static controls;

 Forms can be broken into chunks packaged in assemblies that can automatically

update itself and can be easily managed with minimal effort;

 Designing the application to be stateless provides scalability and flexibility with

ease for debugging and maintenance;

 Windows Forms applications should be designed based on the level of trust

required, the need to request for permissions, and handle security exceptions

wherever necessary;

 Windows Form cannot be passed across application domain boundary since they

are not designed to be marshaled across application domains.

The first step to create a new Windows Form application is to initiate a new instance of

Visual Studio and choose to create this type of project. This situation is illustrated in

Figure 3. The user must provide the following information:

 Choose Visual C# as the programming language;

 In the project template choose the option “Windows Forms Application”;

 Choose the project name, solution name and the folder where solution will be saved.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 12

Figure 3 – Creation of a new Windows Form application

After this initial step the user can draw the graphical interface and associate the code

to each object. The typical layout is given in Figure 4.

Figure 4 – Layout of a Windows Form application

The toolbox window can be use to draw objects in a Windows Form Application. Most

common graphical objects are buttons, checkboxes, comboboxes, labels,

monthcalendars and textboxes. Each object has proprieties, which can be easily

accessed using the mouse

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 13

using System;

using

System.ComponentModel;

using System.Drawing;

using System.Windows.Forms;

namespace FormWithButton

{

public class Form1 : Form

{

public Button

button1; public

Form1()

{

button1 = new Button();

button1.Size = new Size(40,

40);

keyboard. Figure 5 gives an example of a property window, in which we can change

several elements, such as the font, image, text, coordinates, etc.

Figure 5 – Properties of an object

Like in the console application, here the most basic windows form application is also

the traditional “hello world” program. For that, we will create a basic button and

associate a message box when we press it.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 14

button1.Location = new Point(30,

30); button1.Text = "Click me";

this.Controls.Add(button1);

button1.Click += new EventHandler(button1_Click);

}

private void button1_Click(object sender, EventArgs e)

{

MessageBox.Show("Hello World");

}

[STAThread]

static void

Main()

{

Application.EnableVisualStyle

s(); Application.Run(new

Form1());

}

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 15

4. C# syntax

4.1 Variables

Variables are stored in memory and allow keeping data during the program’s execution.

The value of each variable can be changed by the user directly or indirectly through a

calculation process. There are several types of C # variables, some of which are quite

complex, so attention is given at this stage to the most common and basic variable

types (Figure 6).

Figure 6 – Basic types of variables

It is also important to look to the size and limits of each variable. This information is

provided in Figure 7.

Figure 7 – Size and limits of variables

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 16

using System;
namespace

VariableDefinition { class
Program {

static void Main(string[]
args) { short a;
int b ;
double
c;
/* actual initialization
*/ a = 10;
b = 20;
c = a + b;
Console.WriteLine("a = {0}, b = {1}, c = {2}", a,
b, c); Console.ReadLine();

}
}

}

using System;
namespace

TypeConversionApplication { class
ExplicitConversion {

static void Main(string[]
args) { double d =
5673.74;
int i;

// cast double to
int. i = (int)d;
Console.WriteLine(
i);
Console.ReadKey(
);

}
}

}

The example below provides a small example performing initialization and operations

with variables.

Typically it is common the need to convert one type of data to another type. There are

two ways to do it:

 Implicit type conversion – these conversions are performed by C# in a type-safe

manner. It typically involves conversions from smaller to larger integral types and

conversions from derived classes to base classes;

 Explicit type conversion – these conversions are done explicitly by users using

pre- defined functions. Explicit conversions require a cast operator.

In the example below we have a cast conversion from double to int.

C# also provides built-in type conversion methods. Some of them include:

 ToDateTime – converts a type (integer or string type) to date-time structures;

 ToDecimal – converts a floating point or integer type to a decimal type;

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 17

using System;

namespace

TypeConversionApplication { class

StringConversion {

static void Main(string[]

args) { int i = 75;

float f = 53.005f;

double d =

2345.7652;

Console.WriteLine(i.ToString

());

Console.WriteLine(f.ToString

());

Console.WriteLine(d.ToStrin

g()); Console.ReadKey();

}

}

}

 ToDouble – converts a number to a double type;

 ToInt32 – converts a type to a 32-bit integer;

 ToString – converts an element to a string.

In the example below we convert three different types to a string object.

4.2 Operators

Operators are use to process and calculate values. They can also be used for other

purposes like testing conditions or for assignment processes. In general we have the

following classes of operators:

 Arithmetic operators;

 Relational operators;

 Logical operators;

 Bitwise operators;

 Assignment operators;

 Unary operators;

 Ternary operators;

 Misc operators.

Figure 8 provides a concise overview of the operators that we may found in Visual C#.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 18

using System;
namespace
Operator
{

class LogicalOperator
{

public static void Main(string[] args)
{

bool result;
int firstNumber = 10, secondNumber = 20;

// OR operator

result = (firstNumber == secondNumber) || (firstNumber
> 5); Console.WriteLine(result);

// AND operator
result = (firstNumber == secondNumber) && (firstNumber
> 5); Console.WriteLine(result);

}
}

}

Figure 8 – Overview of operators

Finally, it is also important to look to the precedence of operators. The associativity

specifies if the operator will be evaluated from left to right or right to left. Most operators

are evaluated from left to right, but there are some exceptions like the equality, ternary

or assignment operators.

A simple example of using logical operators is given below. The first test condition

returns True and the second returns False.

An example of suing the ternary operator is given below. Basically, the ternary operator

can be used to avoid the use of if-else statement. If the name is equal to Sam, then it

returns “1”, else it returns “-1”.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 19

using System;

public static void Main(string[] args)
{

int num = 11;

if (num % 2 == 0)

{
Console.WriteLine("It is even number");

}
else
{

Console.WriteLine("It is odd number");
}

}

static void Main(string[] args)

{

int i = 10, j = 20;

if (i > j)

{

Console.WriteLine("i is greater than j");

}

4.3 if-else statement

If and if-else statements allow the conditional execution of other commands. In the

complete form, if-else, the -if command is executed when the condition is true,

otherwise the -else command is executed. In the example below the input number is

equal to 11. Therefore, in console, it will be written the following message: “It is odd

number”.

“Else-if” statement can also be used together like in the below example.

using System;

class Program
{

static void Main()
{

Console.WriteLine(GetValue("Sa
m"));
Console.WriteLine(GetValue("Tom
"));

}
static int GetValue(string name)

{

return name == "Sam" ? 1 : -1;
}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 20

public static void Main(string[] args)
{

Console.WriteLine("Enter a number:");
int num = Convert.ToInt32(Console.ReadLine());

switch (num)

{
case 10: Console.WriteLine("It is 10"); break;
case 20: Console.WriteLine("It is 20"); break;
case 30: Console.WriteLine("It is 30"); break;
default: Console.WriteLine("Not 10, 20 or 30"); break;

}
}

using System;

public class ForExample

{
public static void Main(string[] args)
{

for(int
i=1;i<=10;i++){
Console.WriteLine(
i);

4.4 Switch statement

The switch statement is an alternative of the “if-else” statement when we have multiple

conditions. In the following example the “switch” is used to indicate the number passed by the

user in the console. Readline() method is used to read the number and after that a new

integer variable is created. The “convert” method is used to convert from string to int. Then,

the num is tested in the switch statement. “Break” is used to exit from the switch statement.

4.5 For loop

For loop is used to iterate a part of a program several times. It is highly recommends

when the number of iteration is fixed. Typically we have the following elements in a for

loop: (i) initialization of a variable; (ii) check condition; and (iii) increment/decrement

value. A simple example is given below.

else if (i < j)

{

Console.WriteLine("i is less than j");

}

else

{

Console.WriteLine("i is equal to j");

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 21

using System;

namespace

Loops {

class Program {

static void Main(string[]

args) { for (; ;) {

Console.WriteLine("Hey! I am Trapped");

}

}

}

}

Using System;

public class WhileExample
{
public static void Main(string[] args)
{

int i=1;
while(i<=10
)
{

Console.WriteLine(
i); i++;

}
}

}

int i = 0;

while

(true)

{

It is possible to create a for loop without limits, like it is shown in the example below.

4.6 While loop

The while loop is an alternative of the for loop. Typically the same functionality can be

performed using both loops. However, if the number of iteration is not fixed, it is

recommended to use the while loop. A simple example is given below. In this case, the

for loop would give better performance.

We can use the break instruction to break loop or switch statement. An example is

given below. The numbers are written from 0 to 10. The break is used to exit from the

while loop when i is higher than 10.

}

}
}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 22

using System;

public class ArrayExample

4.7 Arrays

Arrays are objects that have the same type and have contiguous memory location. In

Visual C# the array index starts from zero. Arrays offer the following features:

 Code optimization;

 Random access;

 Easy to manipulate, traverse and sort data.

A visual example of an array structure is given in Figure 9.

Figure 9 – Structure of an array (David Grossman, 2013)

Visual C# offers three types of arrays:

 Single dimensional array;

 Multidimensional array;

 Jagged array.

Single dimensional array is the most common and easiest way to have an array. It can

be created by declaring:

 Int[] arr = new int[5];

This declaration means that we have a single dimensional array composed of five

elements. A more complete example is given below. In this example we have generally

three phases: (i) creating array; (ii) initializing array; and (iii) traversing array. Position 1

and 3 of the array are not initialized. A for loop is used to traversing the array.

Console.WriteLine("Value of i:

{0}", i); i++;

if (i >

10)

break

;

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 23

using System;

public class ArrayExample

{

public static void Main(string[] args)

{

int[] arr = { 10, 20, 30, 40, 50 };//creating and initializing array

//traversing array

foreach (int i in

arr)

{

Console.WriteLine(i);

}

}

}

using System;

namespace ArrayApplication

{ static void Main(string[]

args) {

/* an array with 5 rows and 2 columns*/

Foreach loop can also be used to traversing the elements of an array. An example is

given below.

We can also have multidimensional arrays that basically have more than one

dimension. An example is given below. In the beginning of the process the array is

initialized. Then, each element is written in the console using two for loops.

{

public static void Main(string[] args)
{

int[] arr = new int[5];//creating
array arr[0] = 10;//initializing array
arr[2] = 20;
arr[4] = 30;

//traversing array
for (int i = 0; i < arr.Length; i++)

{

Console.WriteLine(arr[i]);
}

}
}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 24

using

System;

class

Program

{

static void Main()

{

// Declare local jagged array with 3

rows. int[][] jagged = new int[3][];

// Create a new array in the jagged array, and

assign it. jagged[0] = new int[2];

jagged[0][0] = 1;

jagged[0][1] = 2;

// Set second row, initialized to

zero. jagged[1] = new int[1];

// Set third row, using array

initializer. jagged[2] = new int[3] {

3, 4, 5 };

// Print out all elements in the jagged

array. for (int i = 0; i < jagged.Length;

i++)

{

int[] innerArray = jagged[i];

for (int a = 0; a < innerArray.Length; a++)

Finally, an example of a jagged array is given. A Jagged array is basically an array of

arrays. It can be used to store more efficiently many rows of varying lengths. Any type

of data, reference or value, can be used.

int[,] a = new int[5, 2] {{0,0}, {1,2}, {2,4}, {3,6}, {4,8} };

int i, j;

/* output each array element's value

*/ for (i = 0; i < 5; i++) {

for (j = 0; j < 2; j++) {

Console.WriteLine("a[{0},{1}] = {2}", i, j,

a[i,j]);

}

}

Console.ReadKey();

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 25

using System;
namespace CSharpProgram
{

class Program
{

static void Main(string[] args)

{

// Creating an array

int[] arr = new int[6] { 5, 8, 9, 25, 0, 7 };
// Creating an empty
array int[] arr2 = new
int[6];
// Displaying length of array

4.8 Arrays class

Array class is responsible to provide methods and operations to deal with arrays.

These methods turn easier the process of creating, manipulating, searching and sorting

elements of an array.

The most common proprieties offered by an array class are:

 IsFixedSize – it is used to get a value indicating whether the array has a fixed size or
not;

 Length – it is used to get the total number of elements in all the dimensions of the
array;

 Rank – it is used to get the number of dimensions of the array.

Looking to the methods, the most useful are:

 Clone() – it is used to create a shallow copy of the array;

 CopyTo(Array,Int32) – it copies all the elements of an array to another array

starting at the specific destination array index;

 IndexOf(Array,Object) – it is used to search for a specific object and returns the

index of its first occurrence in an array;

 Reverse(Array) – it is used to reverse the sequence of the elements in the entire array;

 Sort(Array) – it is used to sort the elements in an entire array.

Below we may find an example of using several operation of an array class. The results

are written in the console using the PrintArray() method.

{

Console.Write(innerArray[a] + " ");

}

Console.WriteLine();

}

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 26

using System;
namespace FunctionExample
{

class Program
{

// User defined function
public string Show(string message)
{

4.9 Functions

A function is used to execute statements within a specific block. It has fundamentally

two purposes: (i) increase the readability of the code; and (ii) help in reusing code.

When declaring a new function, three kinds of elements must be defined:

 Function name – it is unique name that is used to call the function;

 Return type – is used to specify the data type of function return value;

 Parameters – list of arguments that we can pass to the function during call.

In the first example below we defined a function that uses a string parameter and

returns also a string. Two strings are written in the console: (i) one inside the show()

function; and (ii) another inside the main() function.

Console.WriteLine("length of first array: "+arr.Length);
// Sorting
array
Array.Sort(arr
);
Console.Write("First array elements: ");
// Displaying sorted
array PrintArray(arr);
// Finding index of an array element
Console.WriteLine("\nIndex position of 25 is "+Array.IndexOf(arr,25));
// Coping first array to empty array
Array.Copy(arr, arr2, arr.Length);
Console.Write("Second array elements: ");
// Displaying second
array PrintArray(arr2);
Array.Reverse(arr);
Console.Write("\nFirst Array elements in reverse
order: "); PrintArray(arr);

}
// User defined method for iterating array
elements static void PrintArray(int[] arr)

{

foreach (Object elem in arr)
{

Console.Write(elem+" ");
}

}
}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 27

using System;

namespace OutParameter

{

class Program

{

// User defined function

public void Show(out int a, out int b) // Out parameter

{

int square =

5; a =

square;

b = square;

// Manipulating value

a *= a;

b *= b;

}

// Main function, execution entry point of the

program static void Main(string[] args)

{

int val1 = 50, val2 = 100;

Program program = new Program(); // Creating Object

Console.WriteLine("Value before passing \n val1 = " + val1+" \n val2 =

"+val2); program.Show(out val1, out val2); // Passing out argument

A function can also receive “out” parameters. It works like a reference-type, except that

it does not require variable to initialize before passing. An example is given below. The

values before calling the show() function are equal to 50 and 100; after executing the

function, the new variables are equal to 25 for both variables.

Console.WriteLine("Inside Show
Function"); return message;
}
// Main function, execution entry point of the
program static void Main(string[] args)
{

Program program = new Program();
string message = program.Show("My
Name"); Console.WriteLine("Hello
"+message);

}

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 28

using System;

public class Student

{

int id;

String name;

public static void Main(string[] args)

{

Student s1 = new Student();//creating an object of

Student s1.id = 101;

s1.name = "My name";

Console.WriteLine(s1.id);

Console.WriteLine(s1.nam

e);

}

}

using System;

public class Student

{

public int id;

public String name;

public void insert(int i, String n)

4.10 Class

A class is the grouping of objects with the same data structure defined by attributes or

properties and operations. In short, classes are descriptions of objects. An example of

using a class only with attributes is provided below. We create a new Student class

with two attributes: (i) id; and (ii) name. Both attributes are written in the console.

A more complete example is given below where we have an example with a class that

also offers two methods. The insert() method is used to add a new id and name. The

display() method is used to write the name of the student in the console. Two new students’

objects are created in the main function.

Console.WriteLine("Value after passing \n val1 = " + val1 + " \n val2 = " + val2);

}

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 29

using System;

public class Employee

{

public int id;

public String

name; public float

salary;

public Employee(int id, String name, float salary)

{

this.id = id;

The “this” syntax can be used to refer to the current instance of the class. This approach

can be used to refer current class instance variable, to pass current object as a

parameter to another method and to declare indexers. A simple example how to adopt

this approach is given below. In this case we create a new Employee() class that

contains information on id, name, and salary.

{

id = i;

name =

n;

}

public void display()

{

Console.WriteLine(id + " " + name);

}

}

class TestStudent{

public static void Main(string[] args)

{

Student s1 = new

Student(); Student s2 =

new Student();

s1.insert(101, "Peter");

s2.insert(102,

"Tom");

s1.display();

s2.display();

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 30

using System;

public static class MyMath

{

public static float PI=3.14f;

public static int cube(int n){return n*n*n;}

}

class TestMyMath{

public static void Main(string[] args)

{

Console.WriteLine("Value of PI is: "+MyMath.PI);

Console.WriteLine("Cube of 3 is: " +

MyMath.cube(3));

}

It is possible to have static classes, which are normal classes but they can’t be instantiated.

Additionally, it can have only static members. Static classes contain only static

members, cannot be instantiated, and cannot contain instance constructors. An

example is given below. There is a static attribute called “PI” and a static method

entitled “cube” that receives an integer parameter.

this.name =

name; this.salary

= salary;

}

public void display()

{

Console.WriteLine(id + " " + name+" "+salary);

}

}

class TestEmployee{

public static void Main(string[] args)

{

Employee e1 = new Employee(101, "Peter",

50000f); Employee e2 = new Employee(102,

"Tom", 32000f); e1.display();

e2.display();

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 31

using System;

public class Employee

{

public float salary = 40000;

}

public class Programmer: Employee

{

public float bonus = 10000;

}

class TestInheritance{

public static void Main(string[] args)

{

Programmer p1 = new Programmer();

Console.WriteLine("Salary: " +

p1.salary); Console.WriteLine("Bonus:

" + p1.bonus);

}

}

using System;

public struct Rectangle

A class offer inheritance that is a process in which one object acquires all the

properties of its parent object automatically. The class which inherits the members of

another class is called derived class and the class whose members are inherited is

called base class. The biggest advantage of inheritance is to improve the code

reusability. An example is given below. A programmer is a particular case of an

employee. It has access to the generic salary of the employee and it has access to the

bonus that is specific of the Programmer class. The information regarding salary and

bonus is written in the console.

4.11 Structs

A struct is a special variable that contains several other variables internally generally of

different types. The internal variables contained by the struct are called members of the

struct. The purpose of a struct is to allow, when storing the data of the same entity, this

can be done with a single variable. In the example below we create a new rectangle

structure. A rectangle is composed of width and height. The area of rectangle is

calculated multiplying the width with height.

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 32

using

System;

struct Books

{

public string title;

public string

author; public

string subject;

public int book_id;

};

public class testStructure {

public static void Main(string[] args) {

Books Book1; /* Declare Book1 of type Book */

Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */

Book1.title = "C

Programming";

Book1.author = "Nuha Ali";

Book1.subject = "C Programming

Tutorial"; Book1.book_id = 6495407;

/* book 2 specification */

Another example of using structs is given below. In this case we create a new struct

for a book containing information on book_id, title, author and subject. Two books are

created, specified and printed.

{

public int width, height;

}

public class TestStructs

{

public static void Main()

{

Rectangle r = new

Rectangle(); r.width = 4;

r.height = 5;

Console.WriteLine("Area of Rectangle is: " + (r.width * r.height));

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 33

using System;

public class StringExample

{

public static void Main(string[] args)

{

string s1 = "hello";

char[] ch = { 'c', 's', 'h', 'a', 'r', 'p'

}; string s2 = new string(ch);

Console.WriteLine(s1);

Console.WriteLine(s2);

}

4.12 Strings

In programming a string is a sequence of characters generally used to represent words,

phrases or texts in a program. The example below shows two ways to represent a

string object. “S1” is declared initially as a string and “ch” is declared as an array of char

objects. Then, we create a new string “s2” that is composed of “ch”.

Book2.title = "Telecom Billing";

Book2.author = "Zara Ali";

Book2.subject = "Telecom Billing Tutorial";

Book2.book_id = 6495700;

/* print Book1 info */

Console.WriteLine("Book 1 title : {0}", Book1.title);

Console.WriteLine("Book 1 author : {0}",

Book1.author);

Console.WriteLine("Book 1 subject : {0}", Book1.subject);

Console.WriteLine("Book 1 book_id :{0}", Book1.book_id);

/* print Book2 info */

Console.WriteLine("Book 2 title : {0}", Book2.title);

Console.WriteLine("Book 2 author : {0}", Book2.author);

Console.WriteLine("Book 2 subject : {0}", Book2.subject);

Console.WriteLine("Book 2 book_id : {0}",

Book2.book_id); Console.ReadKey();

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 34

using

System;

class

Program

{

static void Main()

The string class offers some useful methods to perform the following operations:

 Compare (string,string) – it is used to compare two specific String objects. It

returns an integer that indicates their relative position in the sort order;

 CompareTo (String) – it is used to compare this string instance with a specific

String object. It indicates whether this instance precedes, follows, or appears in

the same position in the sort order as the specific string;

 Concat (String, String) – it is used to concatenate two specified instances of string;

 Contains (String) – it is used to return a value indicating whether a specific

substring occurs within this string;

 Copy (string) – it is used to create a new instance of String with the same value

as a specified String;

 Equals (String, String) – it is used to determine that two specified String objects

have the same value;

 GetHashCode() – it returns the hash code for this string;

 IndexOf (String) – it is used to report the zero-based index of the first occurrence

of the specified string in this instance;

 Insert (Int, String) – it is used to return a new string in which a specific string is

inserted at a specified index position;

 Remove (Int) – it is used to return a new string in which all the characters in the

current instance, beginning at a specified position and continuing through the last

position, have been deleted;

 Split (Char[]) – it is used to split a string into substrings that are based on the

characters in an array;

 Substring (Int) – it is used to retrieve a substring from this instance. The substring

starts at a specified character position and continues to the end of the string;

 ToLower() – it is used to convert a string into lowercase;

 ToUpper() – it is used to convert a string into uppercase;

 Trim() – it is used to remove all leading and trailing white-space characters from

the current string object;

The above list is not exaustive, but intends to give an overview about the main

functions offered by String object.

An example of using the IndexOf() method is given below. Basically it returns a value

different of -1 if the “dog” name is found in the string.

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 35

using

System;

class

Program

{

static void Main()

{

string s = "there is a cat and a dog";

// Split string on spaces.

// ... This will separate all the

words. string[] words = s.Split(' ');

foreach (string word in words)

{

Console.WriteLine(word);

}

}

}

In the example below we use the split() method to divide a string in several words.

4.13 Exceptions

An exception is an indication that some type of exceptional condition occurred during

the execution of the program. Therefore, exceptions are associated with error

conditions that could not be verified during program compilation. The two activities

associated with handling an exception are:

 Generation – signaling that an exceptional condition (for example, an error) has

occurred;

{

// The input string.

const string value = "The dog is here.";

// Test with IndexOf

method. if

(value.IndexOf("dog") != -

1)

{

Console.WriteLine("string contains dog!");

}

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 36

 Capture – the handling (treatment) of the exceptional situation where the actions

required for the recovery of the error situation are defined.

For each exception that can occur during code execution, a block of handling actions

(an exception handler) must be specified. The structure of exceptions handling is given

in Figure

10. The goal is each block is the following:

 Try – encloses the statements that might throw an exception;

 Catch – handles the exceptions thrown by the try block;

 Finally – optional block that is always executed after the execution of the exception.

Figure 10 – Structure of exceptions handling (Arora, 2015)

Two categories of exceptions exist: (i) exceptions that are generated by the application;

and (ii) those generated by the runtime. All exceptions the derived from

System.Exception class like indicated in Figure 11.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 37

using System;

public class ExExample
{

public static void Main(string[] args)
{

try
{

int a = 10;
int b = 0;
int x = a /
b;

}
catch (Exception e) { Console.WriteLine(e); }
finally { Console.WriteLine("Finally block is
executed"); } Console.WriteLine("Rest of the
code");

Figure 11 – Exception handling hierarchy (Kanjilal, 2015)

Common exception classes may be:

 System.DivideByZeroException – handles the error generated by diving a

number with zero;

 System.NullReferenceException – handles the error generated by referencing the

null object;

 System.InvalidCastException – handles the error generated by invalid typecasting;

 System.IO.IOException – handles the input/output errors;

 System.FieldAccessException – handles the errors generated by invalid private

or protected field access.

In the example below we provide a simple example how to use the try/catch statement.

The application will launch an exception saying “System.DivideByZeroException:

Attempted to divide by zero”.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 38

using System;
public class InvalidAgeException : Exception
{

public InvalidAgeException(String message)
: base(message)

{

}
}
public class TestUserDefinedException
{

static void validate(int age)
{

if (age < 18)
{

throw new InvalidAgeException("Sorry, Age must be greater than 18");

}

}
public static void Main(string[] args)
{

try
{

validate(12);
}
catch (InvalidAgeException e) {
Console.WriteLine(e); } Console.WriteLine("Rest
of the code");

}
}

using System;
using
System.IO;
public class FileStreamExample
{

public static void Main(string[] args)

{
FileStream f = new FileStream("c:\\test_example.txt", FileMode.OpenOrCreate);

It is also possible to create user-defined exceptions. It is used to personalize

exceptions according to programming needs. To do this, we need to inherit Exception

class. In the example below a custom exception was created to guarantee that all ages

are greater than 18.

4.14 Files

Working with files can be done in C# using the FileStream class. This class can be

used to perform synchronous and asynchronous read and write operations. In the

example below we used the ReadByte() function to write in the console the contents of

a file. In the end the file is closed using the close() method.

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 39

using System;
using
System.IO;
public class StreamReaderExample

{

public static void Main(string[] args)

{
FileStream f = new FileStream("c:\example_file.txt",
FileMode.OpenOrCreate); StreamReader s = new StreamReader(f);

string line = "";
while ((line = s.ReadLine()) != null)
{

Console.WriteLine(line);

}

s.Close();

f.Close();
}

}

using System;

using

System.IO;

public class StreamWriterExample

{

public static void Main(string[] args)

{

Other alternative to read information from a file is to use the StreamReader class. It

provides two methods to read data:

 Read() – read one character;

 ReadLine() – read a single line from the file.

An example of using the StreamReader class is given below. In this example all lines

of the file are read and written in the console.

Now our intention is to write information into a file. For that, we can use the

StreamWriter() class. Also in this situation two methods can be used: (i) write(); and

writeln(). In the example below we write a single line of data into the file.

int i = 0;

while ((i = f.ReadByte()) != -1)
{

Console.Write((char)i);
}
f.Close();

}
}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 40

using System;

using

System.IO;

namespace CSharpProgram

{

class Program

{

static void Main(string[] args)

{

try

We can also use the FileInfo class to deal with file operations in C#. For instance, we

can use it to create, delete and read files. FileInfo class also provides some useful

proprieties and methods.

List of useful properties:

 CreationTime – it is used to get or set the creation time of the current file;

 DirectoryName – it is used to get a string representing the directory’s full path;

 Exists – it is used to indicate whether a file exists;

 LastAccessTime – it is used to get or set the time from the current file;

 Length – it is used to get the size of the current file;

 Name – it is used to get the name of the file.

List of useful methods:

 AppendText() – it is used to create a StreamWriter that appends text to the file;

 CopyTo (String) – it is used to copy an existing file to a new file;

 Delete() – it is used to permanently delete a file;

 MoveTo (String) – it is used to move a specified file to a new location;

 Open (FileMode) – it is used to open a file in the specified mode.

In the example below we use FileInfo class to create a new file and add text to it.

FileStream f = new FileStream("c:\\output.txt",

FileMode.Create); StreamWriter s = new StreamWriter(f);

s.WriteLine("hello visual

c#"); s.Close();

f.Close();

Console.WriteLine("File created successfully.");

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 41

using System;

using

System.Collections.Generic;

public class ListExample

{

public static void Main(string[] args)

{

// Create a list of strings

var names = new

List<string>();

names.Add("Tom");

names.Add("Lewis");

names.Add("Peter");

4.15 Collections

Collections are generally complex data structures that can store objects. On the

contrary of arrays, which have size limit, collections can grow or shrink dynamically.

There are several types of collections, such as lists, stacks, queues, dictionaries or

hashsets. In the example below we use a list to store elements. The add() method is

used to insert new elements in the list.

{

// Specifying file

location string loc =

"C:\\test.txt";

// Creating FileInfo instance

FileInfo file = new

FileInfo(loc);

// Creating an file instance to

write StreamWriter sw =

file.CreateText();

// Writing to the file

sw.WriteLine("This text is written to the file by using StreamWriter

class."); sw.Close();

}catch(IOException e)

{

Console.WriteLine("Something went wrong: "+e);

}

}

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 42

using System;

using

System.Collections.Generic;

public class

DictionaryExample

{

public static void Main(string[] args)

{

Dictionary<string, string> names = new Dictionary<string,

string>(); names.Add("1","Tom");

names.Add("2","Peter");

names.Add("3","James");

foreach (KeyValuePair<string, string> kv in names)

{

Console.WriteLine(kv.Key+" "+kv.Value);

}

}

}

Other alternative is to use dictionaries that explore the concept of hashtables. It stores

values on the basis of an unique key. It can be used to easily search or remove

elements. In the example below we create a new dictionary and we associate three

elements to it.

4.16 Databases

A very useful functionality of C# is the establishment of physical communication with an

external relational database. In this book, we will provide a brief overview how to do it

with a SQL Server Database.

The first step is to define a new SqlConnection instance that takes a connection string

as argument.

names.Add("Irfan");

// Iterate list element using foreach

loop foreach (var name in names)

{

Console.WriteLine(name);

}

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 43

using System;

using System.Windows.Forms;

using System.Data.SqlClient;

namespace

WindowsApplication1

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

private void button1_Click(object sender,
EventArgs e)

{

string connetionString = null;

SqlConnection cnn ; connetionStrin
g

= "Dat
a

Source=ServerName;Ini
tial Catalog=DatabaseName;User

ID=UserName;Password=Password"

cnn = new

SqlConnection(connetionString); try

{

cnn.Open();

MessageBox.Show ("Connection Open

! "); cnn.Close();

}

catch (Exception ex)

{

MessageBox.Show("Cannot open connection ! ");

connetionString="Data Source=ServerName; Initial Catalog=DatabaseName;User

ID=UserName;Password=Password"

In a named instance of SQL Server it is also necessary to specify the server location.

When the connection is established, SQL Commands will execute with the help of the

Connection Object and retrieve or manipulate the data in the database. Once the

Database activities are over, Connection should be closed and release the Data

Source resources.

A complete example how to establish a connection to a SQL Server Database is given
below.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 44

<?xml version="1.0" encoding="UTF-8"?>

<pessoas>

<pessoa codigo="1" nome="Steve Jobs" telefone="2222-2222"/>

<pessoa codigo="2" nome="Bill Gates" telefone="3333-3333"/>

<pessoa codigo="1" nome="Steve Ballmer" telefone="4444-4444"/>

</pessoas>

public static List<Pessoa> ListarPessoas()

{

List<Pessoa> pessoas = new

List<Pessoa>(); XElement xml =

XElement.Load("Pessoas.xml");

foreach(XElement x in xml.Elements())

{

Once connected to the database, we can execute the set of SQL commands.

SqlCommand command = new SqlCommand("SELECT * FROM TableName", conn);

Parameterzining the query is done by using the SqlParameter passed into the

command. It is a good approach to avoid SQL Injection.

// Create the command

SqlCommand command = new SqlCommand("SELECT * FROM TableName WHERE
FirstColumn

= @0", conn);

// Add the parameters.

command.Parameters.Add(new

SqlParameter("0", 1));

4.17 XML

XML can be used in information systems to share data. In C# it becomes possible to

create, read and edit content of an XML document. We start by presenting the following

example of an XML file.

The first method lists persons in the database. All attributes of the “Pessoa” in the XML file are

passed to the “Pessoa” class.

}

}

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 45

public static void AdicionarPessoa(Pessoa p)

{

XElement x = new XElement("pessoa");

x.Add(new XAttribute("codigo",

p.codigo.ToString())); x.Add(new

XAttribute("nome", p.nome));

x.Add(new XAttribute("telefone",

p.telefone)); XElement xml =

XElement.Load("Pessoas.xml");

xml.Add(x);

xml.Save("Pessoas.xml");

}

public static void ExcluirPessoa(int codigo)

{

XElement xml =

XElement.Load("Pessoas.xml");
XEleme
nt

x = xml.Elements().Where
(p

=
> p.Attribute("codigo").Value.Equals(codigo.ToString())).Fi

rst();

if (x != null)

{

x.Remove();

}

xml.Save("Pessoas.xml");

The next method is responsible for inserting new records and will receive as a

parameter an object of type Person.

It is also possible to exclude elements in a XML file.

Pessoa p = new Pessoa()

{

codigo =

int.Parse(x.Attribute("codigo").Value),

nome = x.Attribute("nome").Value,

telefone = x.Attribute("telefone").Value

};

pessoas.Add(p);

}

return pessoas;

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 46

public static void EditarPessoa(Pessoa
pessoa)

{

XElement xml =

XElement.Load("Pessoas.xml"); XEleme
nt

x = xml.Elements().Where
(p

=
> p.Attribute("codigo").Value.Equals(pessoa.codigo.ToString())).

First();

if (x != null)

{

x.Attribute("nome").SetValue(pessoa.nome);

x.Attribute("telefone").SetValue(pessoa.telefo

ne);

}

xml.Save("Pessoas.xml");

}

XDocument document = new

XDocument(new

XDeclaration("0.1","utf-8","yes"),

new XElement("Students",

new XElement("Student",

new XElement("Name","Paul"),

new

XElement("Email","paul@email.com"),

new XElement("City","Dallas")

)

)

);

document.Save(@"Student.xml");

XDocument document1 = new

XDocument(new

XDeclaration("0.1", "utf-8", "yes"),

new XElement("Students",

Finally, the last piece of code can be used to edit an element in a XML file. The

element is edited and saved on the same XML file.

To create a new XML file the following code can be used. It creates a new XML file

entitled “Studentx.xml” that contains a new XML file with information regarding his/her

name, email and city.

Other example is given below, but in this last situation we have an “id” attribute.

}

mailto:paul@email.com
mailto:paul@email.com

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 47

new

XElement("Student",

new

XAttribute("Id","1"),

new XElement("Name", "Paul"),

new XElement("Email",

"paul@email.com"), new

XElement("City", "Dallas")

)

)

);

document1.Save(@"Student1.xml");

mailto:paul@email.com

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 48

namespace Exercicio1
{

class Program
{

static void Main(string[] args)
{

double
total_desconto;
double iva = 0.23;
double preço_base =
20; double desconto =
0.10; double total;

total_desconto = preço_base * (1 - 0.10);

Console.WriteLine("Total com desconto: "+

total_desconto); total = total_desconto * (1 + iva);

Console.WriteLine("Total final: " + total);

Console.ReadLine();
}

}
}

using System;

public class PrimeNumberExample

5. Scenarios

5.1 Console Application: Price of products

In this first scenario we present a basic situation in which we intend to calculate the

final price of a product. The final price is composed of three elements:

 Preço_base – the base price of the product without any tax;

 Desconto – percentage value of the discount;

 IVA – VAT tax.

All these elements are defined in the main function. Two elements are calculated and

written in the console: (i) the value of the price with discount; and (ii) the final price of

the product.

5.2 Console Application: Prime numbers

This scenario intends to test if a number is prime or not. The first thing to do is to

receive a number from the console. For that we use the Console.ReadLine() method.

After that a for loop is created to test if the number can be divided by one of its divisors.

The remainder of the division is calculated using the “%” operator. On the end, if the

flag is still equal to zero, then we can assume that the number is prime.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 49

using System;

public class SumExample

{

public static void Main(string[] args)
{
int n,sum=0,m;
Console.Write("Enter a number:
"); n=
int.Parse(Console.ReadLine());
while(n>0)
{
m=n%10;
sum=sum+
m; n=n/10;
}
Console.Write("Sum is= "+sum);

}
}

5.3 Console Application: Sum of digits

The idea of this scenario is to calculate the sum of digits. The algorithm for

performing it is composed of the following steps:

1. Get number by the user;

2. Get the remainder of the number;

3. Sum the remainder of the number;

4. Divide the number by 10;

5. Repeat the step 2 while the number is greater than 0.

{

public static void Main(string[] args)
{

int n, i, m=0, flag=0;
Console.Write("Enter the Number to check
Prime: "); n = int.Parse(Console.ReadLine());
m=n/2;
for(i = 2; i <= m; i++)
{
if(n % i == 0)

{
Console.Write("Number is not
Prime."); flag=1;
break;
}

}
if (flag==0)
Console.Write("Number is Prime.");

}
}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 50

using System;

namespace Exercicio3f
{

class Program
{

public static int Sum(int[] arr1)
{

int tot = 0;
for (int i = 0; i < arr1.Length;

i++) tot += arr1[i];
return tot;

}
public static void Main()
{

int[] arr1 = new int[5];
Console.WriteLine("Calcular soma dos elementos de um array");

Console.WriteLine("Escreva 5 elementos para o
array."); for (int j = 0; j < 5; j++)
{

Console.Write("elemento {0} : ", j);
arr1[j] = Convert.ToInt32(Console.ReadLine());

}
Console.WriteLine("Soma: "+ Sum(arr1));
Console.ReadKey();

}

}

}

5.4 Console Application: Sum elements of an array

The idea of this program is to sum five elements of an array. The program offers a

Sum() function that receives an array as argument. Using a for loop this function sums

all elements of an array object. In the main function the program starts by requesting to

the user to give five elements to be added to an array object. After that, the program

class the Sum() function and writes the sum on the console.

5.5 Windows Forms: Dealing with boxes

In windows forms it is fundamental to know how to write and read information from

textboxes and comboboxes. Figure 12 provides an overview about the considered

scenario. Four different visual elements are used:

 Combobox – to list all the customers;

 Buttins – three buttons are used: “initialize”, “add item”, and “remove”;

 Textbox – to place the name of the customer, which can be added;

 Label – to write the total number of items.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 51

using System;
using
System.Collections.Generic;
using
System.ComponentModel;
using System.Data;
using
System.Drawing;
using System.Linq;
using System.Text;
using
System.Threading.Tasks;
using
System.Windows.Forms;

namespace Exercicio2
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void button2_Click(object sender, EventArgs e)
{

//Insere novo elemento na
combobox int cnt =
comboBox1.Items.Count;
comboBox1.Items.Insert(cnt,
textBox1.Text); textBox1.Text = "";
atualiza_itens();

Figure 12 – Dealing with boxes scenario

The user should start to initialize the elements in the combobox. Three customers are

added by pressing the “initialize” button. Then the user can add or remove items. A new

name for the customer must be provided to add a new item. If the user wants to remove

an item, then the name of customer must be selected in the combobox. In all situations

the total number of items is updated.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 52

5.6 Windows Forms: Working with Strings

A small scenario was considered to deal with strings. The image of this scenario is

depicted in Figure 13. The layout of this scenario is composed of three elements:

 Two textboxes to insert two strings;

 A results multiline textbox that is used to write the results of the process;

 A “begin” button that is used to start the process

Figure 13 – Dealing with strings scenario

}

private void button1_Click(object sender, EventArgs e)
{

//Inicializa combobox
comboBox1.Items.Add("Ana")
;
comboBox1.Items.Add("Paulo
");
comboBox1.Items.Add("Pedr
o"); atualiza_itens();

}

private void button3_Click(object sender, EventArgs e)
{

//Remove item da combobox
comboBox1.Items.Remove(comboBox1.SelectedI
tem); atualiza_itens();

}

private void atualiza_itens()

{
//Conta nº de itens da combobox
label2.Text = comboBox1.Items.Count.ToString();

}

}
}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 53

using System;
using
System.Collections.Generic;
using
System.ComponentModel;
using System.Data;
using
System.Drawing;
using System.Linq;
using System.Text;
using
System.Threading.Tasks;
using
System.Windows.Forms;

namespace Exercicio3
{

public partial class Form1 : Form

{

public Form1()
{

InitializeComponent();
}

public void button1_Click(object sender,
EventArgs e)
{

textBox1.Text = "";

//Calcular tamanho das
stirngs
textBox1.AppendText("Size

Environment.NewLine);
textBox1.AppendText("Size

Environment.NewLine);

of string1: " + textBox2.Text.Length +

of string2
:

" + textBox3.Text.Leng
th

+

//Comparar strings
if (String.Compare(textBox2.Text, textBox3.Text) == 0)
{

textBox1.AppendText("The strings are equal." + Environment.NewLine);

}

else if (textBox2.Text.Contains(textBox3.Text))

{
textBox1.AppendText("String2 is contained in String1." +
Environment.NewLine);

}
else
{

textBox1.AppendText("The strings are different." +
Environment.NewLine);

}

The program is composed of three phases:

1. Calculate the size of two given strings;

2. Verify is the second string is contained in the first string;

3. Verify is both strings are equal.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 54

5.7 Windows Forms: Interacting with databases

This scenario builds an application that interacts with a database. The layout of the

scenario is depicted in Figure 14. Six functions are defined:

 Connect to a DB – establishes a new connection to a database. The database

“Empresa” is composed only with two tables: (i) companies; and (ii) employees.

An employee can only works in a company;

 Close DB – closes an established connection to the database;

 Nº of companies – counts the number of companies that exist in the database;

 Name + salary – presents an XML document structure with all the employees’

names and salary;

 Insert company – inserts a new company in the database;

 Delete company – deletes the company previously inserted in the database.

Figure 14 – Interacting with databases scenario

There are several alternatives to query data from a database. The first thing to consider

is if the query will return just one or multiple values. If the query returns just one value,

then the best approach is to use the “ExceuteScalar()” function. If it returns multiple

values, there are two good solutions: (i) use a dataset and a SQLDataAdapter to return

all the data directly to the dataset; or (ii) use a SQLDataReader, which implies that the

connection to the database remains opened until there is data to be read. Both

approaches are presented in the code, but the second approach is commented.

}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 55

using System;

using
System.Collections.Generic;
using
System.ComponentModel;
using System.Data;
using
System.Drawing;
using System.Linq;
using System.Text;
using
System.Threading.Tasks;
using
System.Windows.Forms;
using
System.Data.SqlClient;
using System.IO;

namespace Exercicio5
{

public partial class Form1 : Form
{

System.Data.SqlClient.SqlConnection con;

public Form1()
{

InitializeComponent();
}

public int id_maximo;

private void button1_Click(object sender, EventArgs e)
{

con = new System.Data.SqlClient.SqlConnection();

//con.ConnectionString = @"Data Source=DESKTOP-DA31DSB\ferny;
 Initial Catalog=Empresa; Integrated Security=True";

//con.ConnectionString = @"Server = 192.168.106.187,1433; Database =
Emulation; User ID = admin; Password = admin566751admin; Trusted_Connection =
True";

//con.ConnectionString = @"Server = NEKTON\SQLEXPRESS; Database =
Emulation; User ID = admin; Password = admin566751admin; Trusted_Connection =
True";

con.ConnectionString = @"Server = DESKTOP-DA31DSB\SQLEXPRESS;
Database = Empresa; Trusted_Connection = True";

try

{

con.Open();
}
catch (SqlException)
{

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 56

//MessageBox.Show("Erro de ligação à BD.");
MessageBox.Show("Erro de ligação à BD", "Erro",

 MessageBoxButtons.OK, MessageBoxIcon.Error);
return;

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 57

}

MessageBox.Show("Database Open");
}

private void button2_Click(object sender, EventArgs e)
{

try
{

con.Close();
}

catch (SqlException)
{

return;
}

MessageBox.Show("Database Close");
}

private void button3_Click(object sender, EventArgs e)

{
SqlCommand cmd = new SqlCommand();

cmd.CommandText = "SELECT count(*) FROM
Empresa"; cmd.CommandType =
CommandType.Text; cmd.Connection = con;

// Returns only one element
Int32 count = (Int32)cmd.ExecuteScalar();

textBox1.AppendText(count.ToString() + "\n");

}

private void button6_Click(object sender, EventArgs e)
{

SqlCommand cmd = new SqlCommand();

cmd.CommandText = "SELECT max(id) FROM
Empresa"; cmd.CommandType =
CommandType.Text; cmd.Connection = con;

// Returns only one element
string maximo = cmd.ExecuteScalar().ToString();

//Update max value
int v_id = Int32.Parse(maximo)
+ 1; id_maximo = v_id;
string v_nome = "MyCompany";

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 58

string v_cidade = "Porto";

string sql_content = @"INSERT into Empresa (id, nome, cidade) VALUES
(@sql_id, @sql_nome, @sql_cidade)";

SqlCommand command = con.CreateCommand();

command.CommandType =
CommandType.Text;
command.CommandText = sql_content;
//Avoid SQL Injection
command.Parameters.Add(new SqlParameter("sql_id", v_id));
command.Parameters.Add(new SqlParameter("sql_nome",
v_nome)); command.Parameters.Add(new
SqlParameter("sql_cidade", v_cidade));

// Execute statement and returns a dataReader
SqlDataReader reader =
command.ExecuteReader();

string output = "Conteúdo inserido na
BD."; textBox1.AppendText(output +
"\n"); reader.Close();

}

private void button5_Click(object sender, EventArgs e)
{

int v_id = id_maximo;

string sql_content = "DELETE From Empresa Where id = @sql_id";

SqlCommand command = con.CreateCommand();

command.CommandType = CommandType.Text;
command.CommandText = sql_content;
command.Parameters.Add(new SqlParameter("sql_id",
v_id));

// Executes statement and returns a
dataReader SqlDataReader reader =
command.ExecuteReader();

string output = "Content deleted in
DB."; textBox1.AppendText(output +
"\n"); reader.Close();

}

private void button4_Click(object sender, EventArgs e)
{

SqlCommand cmd = new SqlCommand();

cmd.CommandText = "select nome, salario from
Colaborador"; cmd.CommandType =

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 59

CommandType.Text;
cmd.Connection = con;

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 60

5.8 Windows Forms: Interacting with XML files

This scenario intends to present a scenario in which we interact with XML files. The

layout of the window is composed of the following elements:

 Four buttons – these buttons are used to: (i) list customers from a XML file; (ii)

add a new customer to a XML file; (iii) delete a customer from a XML file; (iv)

create a new file only with the customers that present a negative profit;

 Input data – it can be used by the user to write the code and name of a new

customer. The customer to be deleted must also be equal to the code given in

the textbox;

 Area field – write the appropriate messages to the customer, indicating which

operation has been executed.

//Reading data from database to the
dataset DataSet dst = new DataSet();
SqlDataAdapter dap = new SqlDataAdapter(cmd.CommandText, con);
dap.Fill(dst);

//Writing data
var writer = new StringWriter();
dst.WriteXml(writer);
textBox1.AppendText(writer.ToString
());

/* Using datareader - low performance
// Reading contents
using (SqlDataReader reader = cmd.ExecuteReader())
{

while (reader.Read())
{

for (int i = 0; i < reader.FieldCount; i++)
{

textBox1.AppendText(reader.GetValue(i).ToString());

}
textBox1.AppendText("\n");

}
}
*/

}

}
}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 61

<?xml version="1.0" encoding="utf-8"?>

<customers>
<customer cod="1" name="Mark" profit="1500" />
<customer cod="2" name="Peter" profit="-500" />
<customer cod="3" name="Tanya" profit="5500" />
<customer cod="4" name="Rachel" profit="-3500" />

<customer cod="5" name="Paul" profit="1200" />

</customers>

using System;
using
System.Collections.Generic;
using
System.ComponentModel;
using System.Data;
using
System.Drawing;
using System.Linq;
using System.Text;
using
System.Threading.Tasks;
using
System.Windows.Forms;
using
System.Data.SqlClient;

Figure 15 – Interacting with XML files scenario

It is also relevant to present the structure of “customer.xml” file. Each customer has

information regarding his/her code, name and profit. The profit can be positive or

negative. In the file below we have two customers with negative profit.

The source code of this scenario is given below. LINQ to XML was used to perform the

requested operations. A “customer” class was created to receive the information from

the XML file. In the last operation, a “customers2.xml” was created. This file is

responsible to receive a copy of the customers with negative profit.

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 62

using System.IO;

using System.Xml.Linq;

namespace Exercicio5
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void button1_Click(object sender, EventArgs e)
{

XElement xml =
XElement.Load("Customers.xml"); foreach
(XElement x in xml.Elements())
{

Customer c = new Customer();
c.cod =
int.Parse(x.Attribute("cod").Value);
c.name = x.Attribute("name").Value;
c.profit =
float.Parse(x.Attribute("profit").Value);
textBox1.AppendText(c.cod.ToString() + ";
"); textBox1.AppendText(c.name + "; ");
textBox1.AppendText(c.profit.ToString() +
"\n");

}
}

private void button2_Click(object sender, EventArgs e)
{

XElement x = new XElement("customer");
x.Add(new XAttribute("cod",
textBox2.Text)); x.Add(new
XAttribute("name", textBox3.Text));
x.Add(new XAttribute("profit", "0"));
XElement xml =
XElement.Load("Customers.xml");
xml.Add(x);
xml.Save("Customers.xml");
textBox1.AppendText("New customer added.
\n");

}

private void button3_Click(object sender, EventArgs e)

{
string cod = textBox2.Text;
XElement xml = XElement.Load("Customers.xml");
XElement x = xml.Elements().Where(p =>
p.Attribute("cod").Value.Equals(cod)).First(); if (x != null)
{

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 63

x.Remove();
}
xml.Save("Customers.xml");

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 64

textBox1.AppendText("Customer deleted. \n");

}

private void button4_Click(object sender, EventArgs e)
{

int n = 0;
XElement xml =
XElement.Load("Customers.xml"); foreach
(XElement x1 in xml.Elements())
{

Customer c = new Customer();
c.cod =
int.Parse(x1.Attribute("cod").Value);
c.name = x1.Attribute("name").Value;
c.profit = float.Parse(x1.Attribute("profit").Value);

if (c.profit < 0)
{

XElement x2 = new XElement("customer");
x2.Add(new XAttribute("cod", c.cod.ToString()));
x2.Add(new XAttribute("name", c.name));
x2.Add(new XAttribute("profit",
c.profit.ToString()));

XElement xml2 =
XElement.Load("customers2.xml");
xml2.Add(x2);
xml2.Save("customers2.xm
l"); n++;

}
}
textBox1.AppendText("Number of customers in the file: "+n.ToString());

}

class Customer
{

public int cod;
public string
name; public float
profit;

}
}

}

Visual C#.NET: Console Applications and 2018

Windows Forms

Page 62

View publication stats

Bibliography

Albahari, J. (2017). C# 7.0 in a Nutshell: The Definitive Reference. O'Reilly Media.

Arora, A. (2015, 01 13). Using Await in Catch and Finally Blocks: A New Feature of C#

6.0. Retrieved from https://www.c-sharpcorner.com/UploadFile/16101a/using-await-in-

catch-and- finally-block-a-new-feature-of-C-Sharp/

Byahut, J. (2014, 06 23). Create Xml File Using Linq to Xml. Retrieved from

ASP Helps: http://www.asphelps.com/Linq/Create-xml.aspx

David Grossman, G. F. (2013). Computer Science Programming Basics . O'Reilly Media.

Home & Learn. (2018, 07 12). Visual C# .NET - Contents Page.

Retrieved from https://www.homeandlearn.co.uk/csharp/csharp.html

JavaTPoint. (2018, 07 12). C#. Retrieved from https://www.javatpoint.com/csharp-data-types

Kanjilal, J. (2015, 03 12). Best practices in handling exceptions in C#. Retrieved

from https://www.infoworld.com/article/2896294/application-development/best-

practices-in- handling-exceptions-in-c.html

Rodrigues, J. (2018, 07 12). Manipulando arquivos XML em C#. Retrieved from Linha

de Codigo: http://www.linhadecodigo.com.br/artigo/3449/manipulando-arquivos-xml-

em-csharp.aspx

Techopedia. (2017, 07 10). Windows Forms. Retrieved from

https://www.techopedia.com/definition/24300/windows-forms-

net

Troelsen, A., & Japikse, P. (2015). C# 6.0 and the .NET 4.6 Framework. Apress.

TutorialsPoint. (2018, 07 12). C# Tutorial. Retrieved

from

https://www.tutorialspoint.com/csharp/index.htm

Webber, Z. (2018). C#: The Utmost Intermediate Course Guide In Fundamentals And

Concept Of C# Programming. Amazon Digital Services LLC.

https://www.researchgate.net/publication/326416931
https://www.c-sharpcorner.com/UploadFile/16101a/using-await-in-catch-and-finally-block-a-new-feature-of-C-Sharp/
https://www.c-sharpcorner.com/UploadFile/16101a/using-await-in-catch-and-finally-block-a-new-feature-of-C-Sharp/
https://www.c-sharpcorner.com/UploadFile/16101a/using-await-in-catch-and-finally-block-a-new-feature-of-C-Sharp/
http://www.asphelps.com/Linq/Create-xml.aspx
https://www.homeandlearn.co.uk/csharp/csharp.html
https://www.javatpoint.com/csharp-data-types
https://www.infoworld.com/article/2896294/application-development/best-practices-in-handling-exceptions-in-c.html
https://www.infoworld.com/article/2896294/application-development/best-practices-in-handling-exceptions-in-c.html
https://www.infoworld.com/article/2896294/application-development/best-practices-in-handling-exceptions-in-c.html
http://www.linhadecodigo.com.br/artigo/3449/manipulando-arquivos-xml-em-csharp.aspx
http://www.linhadecodigo.com.br/artigo/3449/manipulando-arquivos-xml-em-csharp.aspx
https://www.techopedia.com/definition/24300/windows-forms-net
https://www.techopedia.com/definition/24300/windows-forms-net
https://www.tutorialspoint.com/csharp/index.htm

